
QI < 0,35e 4":._~oE ' i36 
W 

When ~e =--c/2 (extreme case for our press) this gives QI/Qs < 0.4 and at twice the velocity 

(~o =--E) QI/Qs < 0.06. 

Thus, even for a moderate approach velocity the central unit of the impact device is 
smaller than that of the static press. 

The author is grateful to E. I. Zababakhin for his close interest and useful sugges- 
tions. 
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MECHANISM FOR PLASTIC RELAXATION OF A SOLID IN A SHOCK WAVE 

Yu. I. Fadeenko UDC 534.222.2 

w Model of Phenomenon 

Weconsider plastic relaxation of a solid behind a stationary, plane shock front result- 
ing from above-barrier slip of dislocations. Let the wave be moving in the direction of the 
x axis at a constant velocity D. We employ a coordinate system moving with the wave and we 
consider the state of an elementary plane layer of thickness dx which is stationary in this 
coordinate system. As is usual, we represent the actual dislocation ensemble by four effec- 
tive slip systems of edge dislocations, the planes of which coincide with the planes of non- 
zero principal shear stresses (i.e., they make an angle of ~/4 with the planes normal to the 
coordinate axes). We assume that in any elementary volume and for any slip system, an iden- 
tical number of dislocations of opposite sign is created per unit time. However, the density 
of dislocations of opposite sign will not be the same in the elementary layer dx under con- 
sideration. Indeed, let the dislocation slip velocity be v. Then (from the assumed station- 
arity of the wave) the elementary layer dx crosses identical numbers of dislocations of op- 
posite sign per unit time but it crosses them at different velocities: (D + v//2) and (D -- 
v//~), respectively. Therefore, an excess of dislocations moving in the direction of the 
shock front will be observed in the layer. The relative magnitude of this excess is obvious- 
ly (v/D/2). The effect of an excess of dislocations of one sign is equivalent to the pres- 
ence in the layer dx of an equivalent Smith wall [i] which is the result of discontinuous re- 
laxation because of a change in the principal strains e_ and E by an amount (b/2/Z), where z 
b is the absolute value of the Burgers vector and I is ~he distance between dislocations be- 
longing to a single set in the wall. The structure of a layer with a Smith wall is sketched 
in Fig. i with the dislocation density in the wall being exaggerated by several orders of mag- 
nitude for clarity. To understand what follows, it is important to emphasize that the Smith 
wall moves with a velocity D only in the formal sense; in fact, D is the displacement phase 
velocity of a section in which the dislocation density in the wall has a certain definite val- 
ue whereas the excess dislocations themselves move with a velocity v. Besides the two sets 
of dislocations shown in Fig. i, the wall contains yet another two sets of dislocations which 
are parallel to the plane of the figure so that the total number of dislocations per unit 
area of the wall is 4/I. In the relief region behind the compression wave, the sign of v 
changes and the direction of the Burgers vector for the excess dislocations and for the Smith 
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Fig. I 

wall changes sign. The quantity I is connected with the layer thickness dx and the density 
N of effective dislocations (which is close to the true density of moving dislocations) by 
the relation 

Id, = 2-V2D/Nv. (1.  I) 

We now replace the continuous change in state parameters of the material in the layer 
dx by their discontinuous change in the equivalent Smith wall. For computational simplicity, 
we confine ourselves to consideration of small strains e i << i, i.e., shock waves of moderate 
intensity in which the pressure is much less than the bulk modulus of the material. We de- 
note state parameters ahead of the wall by quantities with the subscript 0 and those behind 
the wall by quantities without a subscript. We keep in mind that ay = e z. Then the condi- 
tions for conservation of mass, momentum, and energy at the discontinuity are written in the 
form 

pOD = p(D -- u), i.e. 

u = D[(e~0 - %) q- 2(%0 -- %)], o~0 -- a= = ponD, 

-- (;x (D --u)~- Oo D [(D --2 u)~ j_ coT] @ ~ (oxs x -I-~ 2~,~y)- 

( ) lv-'~ d-"x" = --  (r.oD @ po D T -'l- coTo -i- T (a~oe.o -b 2O'uo%o). (1'2) 

One should add to them Hooke's law for a plane wave 

n [(i-v)~2v% ~T] ' 
Ox= l--2v I - -  

] 

(i, 3) 

and the condition 

%o -- ~u a:o -- ez :: b~72/I, (1.4) 

where U is the Jump in mass velocity at the discontinuity; p is density; E is Young's modu- 
lus; 9 is the Poisson coefficient; co is heat capacity; e is the coefficient of thermal ex- 
pansion; T is the temperature measured from the state o i = e i = 0; ~i are the principal 
stresses; e is the formation energy for unit length of a dislocation filament, The solution 
of the system (1o2)-(1.4) is extremely laborious in the general case, For small strains, 
however, thermal expansion can be neglected by setting e = 0 without entailing much loss of 
accuracy. By solving the system (1.2)-(1.4) in this approximation, we find 

poco(T_To)  4 b ~ 2 (  ~D ~N) --T-- -- ~ bNv ~ ; (i.ba) 
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2 "V2E b 2v (i -- v) -- (i -- 2v) (poDS/E) 
G=:O -- Gx -- i -- 2v I I -- v--(i -~- v) (i -- 2v) (poD~/E) ' (l.5b) 

where T is the principal shear stress 

E 
= 2 (i + ~ -  7 (~ - ~y) 

(in a compression wave dN/dx < 0 and T < 0). Equation (l.Sa) is valid as long as the density 
of moving dislocations in the wave increases; if it falls, the term containing (dN/dx) in 
this equation should be neglected. 

w Law of Motion for Dislocations 

It is natural to consider the increase in normal stress (Ox, -- Ox) in the layer dx as 
the sum of projections on the x axis of forces applied to the Smith wall, i.e., to the ex~ 
tess dislocations of dominant sign. The velocity component of the latter in the x direction 
is v//2and the power expended by an external source in maintaining the dislocations is 
(a x, -- Ox)V/Cr2. Since all moving dislocations are equivalent (it is impossible to indicate 
which of them make up the Smith wall), this power is distributed uniformly among all Ndx mov- 
ing dislocations, Equating the quantity (axe -- Ox)V/C~to the total power needed to main- 
tain motion of the dislocations at the velocity v, some information can be obtained about 
the specific nature of the laws of motion for dislocations in a shock wave. 

We use the law of viscous above-barrier slip for the dislocations; it is valid for 
stresses very much greater than the static yield point of the material 

Tb = By, (2.1) 

where B is the coefficient of viscosity. The force acting on a dislocation is Tb [2] and the 
power dissipated by a moving dislocation is Tbv. Then from the equation 

(~xo -- ~ = ~bvNdz 

and from Eqs. (i.i), (!.Sb), and (2.1) there follows 

B = bE 2 v ( i -  v)--(l--2v)(PoD~/E) (2.2) 
21/~D( i - -2v)  i - -  v--(1 +v)(l--2v)(poDa/E)" 

Thus, the quantity B takes on a specific value in this case which is typical of motion 
of a dislocation in a stationary shock wave and which does not agree with the phonon vis- 
cosity ~ that appears during the motion of a dislocation in a quaslstatically loaded crys- 
tal. Th~ reason for this difference is that a dislocation moving in ashock wave experi- 
ences acoustic resistancethat is considerably greater than the viscous frictional resistance 
in a phonon gas, 

In fact, one can rewrite Eq. (2.2) in the form 

B - -  pbc" ~ + v  2v(t--~)--( l--2v)(poDS/E) 
2 ~ 2 D  t - - w I - - ~ - - ( I ~ w ) ( I - - 2 v ) ( p o D 2 / E )  ' 

where c is the velocity of longitudinal acoustic waves. Ordinarily, c and D are close in 
value and one can therefore set B = mpbc, where m is a dimensionless coefficient with a 
value of the order of I0-* depending on the specific conditions of the problem. We then 
have from Eq. (2.1) 

~ i n p u t .  

The last equation is similar to the equationdetermining the pressure in a weak shock wave 
excited by a piston moving with a constant velocity v << c. Actually, in this problem, the 
dislocations act llke pistons each of which advances an odd atomic half-plane of the Smith 
wall in the crystal at a velocity v/r (the total effect of all DC~/v dislocations occurring 
at a single dislocation of the Smith wall leads to the fact that the odd atomic half-plane 
advances in the crystal with a velocity D). 
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w Wave Profile Equations 

By substitution of Eqs. (I.i), (2.1), and (2.2) into Eq. (l.5b) we obtain 

d ~ x / d x - - - - 2 b ] / 2 N ~  (3.1) 

(in a compression wave, T < 0 and the compressive negative stress increases in absolute 
value in the direction of negative x while the wave moves in the direction of positive x), 
Having found the increase (Exo -- ex ) from Eqs. (1.2)--(1.4), we can obtain 

dz _ I- 2v i -  3 ( 1 -  2v)(pD2/E) (3.2) 
dx ~ / 2 ( t + v )  2 v ( l - - v ) - - ( l - - 2 v ) ( p D ~ / E )  ' 

and, finally, we have from Eq. (l.5a) 

pcodT/dx  = _ 2 N b 2 ~ / B D - - 2 ~ . d N / d x .  

The quantity bN has the sense of an inverse width for the zone of plastic relaxation, 

In the derivation of general equations for the profile of nonstationary elastoplastic 
waves, the arbitrary amplitude of the deformation is ordinarily represented as the sum of 
elastic and plastic components and the Orovan relation eP = (~)bNv [3, 4] is assumed for the 
plastic deformations, Only elastic deformations were considered in the derivation of Eqs. 
(3 i) and (3,2), and the Orovan relation was not used. This provides an opportunity for 
indirect evaluation of the accuracy of the approximation under which Eqs. (3.1) and (3.2) 
were obtained~ Use of the Orovan relation leads to the expression 

O = ' 1 / E / 2 9 ( t  + v)(l  - -  2v). 

The quantity D is a constant in accordance with the nature of the approximation used (neglect 
of terms of the order of ci) and is close to the velocity of sound. Some deviation of D 
from the true value is unimportant if one considers the low accuracy with which the quanti- 
ties N and v are known at the present time, 

w Possibility of Comparison with Experiment 

The two unknown functions N and v appear in the general equation for the profile of 
elastoplastic waves. The function v is defined in Eqs. (3.1) and (3~176 Equations (3.1) 
and (3.2) can be considered as particular cases of the general equations for weak stationary 
waves. Indeed, from a comparison of Eqs. (3.1) and (3.2) with the corresponding simplifica- 
tion of the general equations in [3] [for the slip law (2.1)], it turns out that only the 
values of the coefficients for the ratio (N/B) are different, The value of this coefficient 
in Eqs, (3,1) and (3,2) ~s larger by approxiamtely the same factor by which B is larger than 
Bp; therefore, calculations of the profile of weak waves from the equations in [3] with 
phonon viscosity leads to the same results as calculations based on Eqs, (3.1) and (3,2) 
with a somewhat changed N. 

Estimates of the value of B for steel yield values of the order of 10 -2 p, which is 
somewhat greater than Bp but agrees with the estimates in [5, 6], Direct experimental veri- 
fication of Eq, (2.2) is hardly possible at the present time since the unknown function N 
remains in these equations. 

The problem of the choice of N was discussed in [3, 4, 7] and a number of other papers; 
it is far from resolution at the present time and therefore the most interesting method of 
using Eqs. (3.1) and (3.2) is for numerical analysis of experimental data for the purpose of 
determining N, 

1, 

2. 
3. 

4, 
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APPLYING THE KINETIC THEORY OF STRENGTH TO DETERMINING 

LIFE OF LIGHT ALLOYS AFTER PRELIMINARY PLASTIC DEFORMATION 

N. A. Moshkin and A. I. Ravikovich UDC 539.4:669.715:620.172.251.2 

Residual plastic strains can occur in light-alloy structural elements as a result of 
the action of a complex of service loads (especially at points of stress concentration) and 
also in connection with certain fabrication processes involving bending, stretching, various 
types of cold forging, etc. 

The temperature conditions and the amount of plastic deformation determine the previous 
history of the material and may have an important influence on the resistance of the alloy 
to static and variable loads. It has been experimentally established that the nature of the 
effect of plastic deformation depends on many factors: the composition of the alloy, the 
conditions of preliminary deformation, and the load-temperature conditions of the subsequent 
tests. Depending on the circumstances, the strength properties of the material may increase, 
decrease, or remain unchanged. 

The extensive use of plastically deformed materials has led to many attempts to deter- 
mine experimentally the optimum plastic strain. However, the purely experimental approach is 
very laborious and does not always give reliable results for the favorable degree of plastic 
deformation. 

We have investigated the effect of the degree of preliminary plastic tensile deformation 
on the long-time strength of Duralumin at various temperatures and stresses and have esti- 
mated the possibility of determining the long-time strength under these conditions on the basis 
of the kinetic theory of strength. 

As the material for investigation we used sheets of commercial hardened and naturally 
aged DI6AT alloy 3 ran thick. All the sheets were taken from the same melt. The specimens 
were cut parallel to the direction of rolling. The mechanical properties of the material in 
the starting state (as delivered) were as follows: ultimate strength o u = 48.6 kg/mm 2 , yield 
point ~o.2 = 36.4 kg/mm', relative elongation ~ = 14.3%. 

The mechanical characteristics were determined and the preliminary plastic deformation 
(2, 4, 6, and 8%) was produced at room temperature in a GURM-10 hydraulic tensile testing 
machine. The specimens subjected to plastic deformation were finished specimens which after 
cold-hardening had not undergone any further mechanical working. Due to the specially de- 
signed recording instrument, the plastic deformation could be carried out with a high degree 
of accuracy. The spread of the valves at each plastic strain level did not exceed 0.01- 
0.03%. After preliminary deformation the specimens were tested to destruction in creep at 
temperatures of 125, 150, 175, and 200~ and stresses of 18, 20, 22, 24, 26, 28, 30, 32, 34, 
36, 38, 40, and 42 kg/mm 2. 

The tests were conducted on redesigned DST-5000 machines; undeformed specimens were also 
tested to destruction. Altogether 235 specimens were tested. 

The test conditions and the corresponding values of the stress rupture life for various 
levels of preliminary plastic deformation (PPD) are indicated in Table i, from which it is 
possible to judge the complex influence of the preliminary plastic deformation on the long- 
time strength. Thus, at 125 and 150~ and stresses a = 34, 36, 38, 40, and 42 kg/mm z, PPD 
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